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A thermally driven steady axisymmetric flow of gas of small diffusivity in a 
vertical circular cylinder rotating rapidly about its axis of symmetry is studied. 
The side wall is a thermal insulator and the horizontal end plates are perfect 
conductors. The temperature of the top end plate is kept slightly higher than 
that of the bottom one. 

The boundary-layer method is applied to solve the linearized basic equations 
and the following results are obtained. 

(i) The axial velocity in the inner core is fully controlled by the Ekman suction 
on the horizontal plates and is the same as that in the case of a perfectly con- 
ducting side wall. 

(ii) The closed circulation in the side-wall Stewartson E* layer is strongly 
suppressed compared with the case of a perfectly conducting side wall. 

This situation is reflected in the inner temperature field, which deviates from 
that in the case of a perfectly conducting side wall. The critical parameter 
governing the solution is found to be (y  - 1) Pr GOE-*/4y, where Pr is the Prandtl 
number, y the ratio of specific heats, E the Ekman number and Go the square 
of the Mach number based on the peripheral speed of the cylinder. 

1. Introduction and summary 
The gas centrifuge is a device for separating gaseous isotope mixtures such as 

UF, by a strong centrifugal acceleration. As the gas-centrifuge method is more 
advantageous economically than the gaseous-diffusion method for enriching 
uranium, the study of the gas centrifuge is one of the most urgent in the world 
(Abajian & Fishman 1973). 

In  the rotating cylinder of the gas centrifuge, counter-current flow is set up by 
some pumping mechanism. Because the flow profile is crucial for determining the 
separative power of the centrifuge (Cohen 1951; Kanagawa & Oyama 1961; 
Olander 1972; Matsuda 1975), a detailed study of the flow field has been necessary. 
For thermally driven flow of a Boussinesq fluid in a rotating cylinder, Barcilon & 
Pedlosky (1967) and Homsy & Hudson (1969) did the pioneering work. They 
showed that the solution depends upon the thermal conditions assumed at the 
side wall if nonlinear convective heat transport is taken into account. In  the gas 
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centrifuge, however, the centrifugal force is so large that the Boussinesq 
approximation is not appropriate. 

Linear analyses of thermally driven flow of a compressible gas in a cylinder 
with perfectly conducting walls were performed by Sakurai & Matsuda (1974, 
hereafter referred to as I) and Nakayama & Usui (1974). They showed that the 
volume of a fluid element of the gas may change appreciably owing to the basic 
pressure variation in the radial direction. Thus a fluid element is heated or cooled 
by the work done by the pressure when it moves radially. This is the most 
important difference between a compressible gas and a Boussinesq fluid. 

Despite taking into account of the effect of compressibility, these authors did 
not succeed in obtaining a drastic change from the Boussinesq case because they 
restricted themselves to the case of perfectly conducting walls. Fluid elements 
exchange heat via perfectly conducting walls, and thus the above-mentioned 
effect of the volume change is compensated for. To obtain a clearer contrast 
between the cases of a compressible gas and a Boussinesq fluid, therefore, we 
must discard our adherence to the case of perfectly conducting walls. 

We study thermally driven flow of a compressible gas in a rapidly rotating 
cylinder and show that the solution strongly depends upon the thermal condi- 
tions assumed a t  the cylinder walls even if the convective heat transport is not 
taken into account. This approach is desirable also from a practical point of view 
as the walls of modern centrifuges are made of thin metal or carbon fibres. The 
amount of heat transport along thin walls is negligible. Thus, if we can neglect 
radiative heat loss from or input to the walls, they can be considered as an 
insulator rather than a conductor. We want to study the case of thermally 
insulated walls as a typical example. 

In  this paper, we restrict ourselves to the case of a thermally insulated side wall 
and perfectly conducting end plates. The opposite case will be treated in a forth- 
coming paper. The temperature of the top plate is kept higher than that of the 
bottom. For the sake of simplicity, the difference between the top and the bottom 
temperature is assumed to be so small that nonlinear effects can be neglected. 
The viscosity and thermal conductivity of the gas are assumed to be functions of 
the temperature only and to be small. Although many interesting phenomena, 
may appear when we introduce a source-sink distribution on the horizontal end 
plates according to the results in the case of a conducting side wall (Nakayama & 
Usui 1974; Matsuda, Sakurai & Takeda 1975, hereafter referred to as 11; 
Hashimoto 1975), we do not take this effect into account. 

Before discussing the mathematical treatment in detail, we summarize our 
results. Our assumption of small viscosity and conductivity enables us to divide 
our flow region into an inner core and horizontal and side-wall boundary layers. 
As will be discussed in the following sections, our method of analysis is based on 
a boundary-layer treatment of the linearized basic equations. These approxima- 
tions are justified by our assumptions and the method of analysis is completely 
analogous to that in I and I1 except for minor differences in notation. 

The interesting physical aspects of our results, summarized in figures 1-4, are 
as follows. First, the meridional flow in the inner core is axial, and is the same as 
that in the case of a perfectly conducting side wall. This is due to the fact that the 
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FIUURE I. (a) Isotherms in inner core (T = 0-1 on a linear scale). ( b )  Streamlines of the 
closed circulation in the side-wall Stewartson E* layer (non-dimensional flux between 
adjacent curves is 0.005). a = hE-* = 1, aspect ratio A = 5. 
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FIOTJRE 2. (a) Isotherms in inner core (T = 0-1 on a linear scale). ( b )  Streamlines of the 
closed circulation in the side-wall Stewartson EQ layer (non-dimensional flux between 
adjacent curves is 0.005). a = 10, A = 5. 

axial component of the velocity is fully determined by the Ekman-layer suction 
on the end plates, which are still perfectly conducting in the present case. 
Second, the closed circulation in the side-wall Stewartson layer is suppressed. 
As was mentioned above, the heat produced by the radial motion of the gas in 
the side-wall layer can be removed through the perfectly conducting wall. 
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FIGURE 3. (a)  Isotherms in inner core (T = 0-1 on a linear scale). (b )  Streamlines of the 
closed circulation in the side-wall Stewartson E* layer (non-dimensional flux between 
adjacent curves is 0.005). A = 5. (a )  a = 00. (b )  a 
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FIQURE 4. (a) Isotherms in inner core (T = 0-1 on a linear scale). ( b )  Streamlines of the 
closed circulation in the side-wall Stewartson E* layer (non-dimensional flux between 
adjacent curves is 0.005). A = 1 ,  u = 1. 

Because a thermally insulated wall does not allow this process, the closed circula- 
tion is suppressed. This situation is also reflected in the temperature field in the 
inner core because the heat produced in the side-wall layer must be removed 
through the inner core. This trend may be seen by comparing figures 1 and 2. 
Figure 3 (a) shows the inner temperature field in the limiting case of high com- 
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pressibility, while figure 3 (b)  shows the closed circulation in the incompressible 
case. Therefore the present results are dramatically displayed by a comparison 
of figures 1 (a )  and 3 (a )  and figures 3 (b)  and 2 ( b ) .  

In  Q 2, the linearized basic equations and boundary conditions are given. In  Q 3, 
we give the flow in the inner core and the horizontal Ekman layers. The flow in 
the side-wall boundary layer is discussed in Q 4. In  Q 5, the equations derived in 
$9 3 and 4 are solved by an expansion method. A discussion is given in 0 6. 

2. Formulation 
Let us consider a gas in a vertical circular cylinder of radius L and height 2H 

rotating with angular velocity !2 about its axis of symmetry. The side wall of the 
cylinder is thermally insulated while the top and the bottom end plates are 
perfectly conducting and kept at fixed temperatures % + A T  and po-A5?, 
respectively, where AT is small in comparison with To. Because the characteristic 
centrifugal acceleration R2L is about lo5 times as large as gravity in a typical 
gas centrifuge, we can neglect the effect of gravity. 

In  the basic state, in which AT is zero, the gas rotates rigidly with the cylinder, 
and the pressure pR and the density pR are determined by a static balance 
between the centrifugal force and the pressure: 

CR = exp [MSl2(.i2 - L2)/2R%], (2.2) 

where M and R are the mean molecular weight of the gas and the universal gas 
constant, respectively, and P is the radial distance from the axis of rotation; the 
tildes denote dimensional quantities and the suffix 2 evaluation at the periphery. 

Defining the thermal Rossby number 6 by 

6 = AT/!& (2.3) 

we introduce the following non-dimensional variables : 

where (!I,, gg, &) are the original velocity components in the rotating frame. 
Note that the notation and the non-dimensionalization are slightly different 
from those in I and 11. 

Neglecting terms of order 6 by our basic assumption, we get the non- 
dimensional linear equations 

divq+G,ru = 0, (2.5) 

ap = !! (Lu+--divq), i a  
3 ar 

- 2v + rT +-- 
G,ar eR 
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(2.8) 

(2.9) 

Go = M(La)2/RPo, E = p/Pz QL2, eR = exp [&Go(r2 - l)], (2.11) 

Pr is the Prandtl number, y the ratio of specific heats and p the coeflicient of 
viscosity. We base our Ekman number E on the peripheral density in contrast 
to those in I and 11, in which we used the density a t  the axis of the cylinder. We 
prefer OUT present definition from a practical point of view, because P2 does not 
change much from one centrifuge to another to prevent solidification of the 
operating gas. The order of magnitude of E is about 10-6-10-7. Note that the 
combination E/eR, which we call the effective Ekman number or the local Ekman 
number, appears as an important parameter in the basic equations. This para- 
meter ranges from 10-7 at the periphery to 10-2 a t  the centre. The parameter Go, 
which is the square of the Mach number based on the peripheral speed, is about 
20; the radius L and height 2 H  are of the order of 10 cm and 100 cm, respectively. 
The Prandtl number is about 1 and y is 1.067. 

If we neglect rarefied-gas effects, the gas velocity must vanish at the walls and 
its temperature must coincide with that of the boundary there: 

u = v = w = O  on z = + A  and r = 1 ,  (2.12) 

T = + 1 on z = _+A,  aT/ar = 0 on r = 1, (2.13) 

where A ( =  H / L )  is an aspect ratio. 

3. The inner core and the Ekman layer 

The variables are scaled in the inner core according to 

The inner core 

u = E w ~ ,  v = ~ i ,  W =  Etwi, T = 3, p = Gopt, (3.1) 

where quantities with a suffix i are of order unity. Inserting (3.1) into (2.5)-(2.9) 
and retaining the terms of lowest order with respect to E ,  we obtain 

awi/az = 0, (3.2) 

(3.3) 

22ci = h&, apl/az = 0, (3.41, (3.5) 

- 4hrui = Aq/ER, (3.6) 

- 2vi + r q  + apt/& = 0, 

where h = (y  - 1) Pr Go/4y. 

of 
Eliminating pi from (3.3) and (3.5) and taking into account the antisymmetry 

and vi with respect to z, we get 

vi = =?&. (3.7) 
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Elimination of ui from (3.4) and (3.6) gives 

where use has been made of (3.7). 

The Ekman layer 

Introducing a stretched co-ordinate 5 = E-*(A - j z ) ,  where j = 1 a t  the top and 
j = - 1 a t  the bottom, we can define Ekman-layer variables (denoted by carets) as 

B = - j r  e-ffc sin (05)/2( 1 + hr2)4, (3.9) 

(3.10) 

(3.11) 

h v = - jr  e-rc cos (r75)/2( 1 + hr2), 

T = jhr2 e-rc cos (r76)1( 1 +it@), 

h 1 

A 

[4 + hr2 + G,r2( 1 + hr2)] e-uc (cos ac+ sin cr6) W =  
Scr(1 +hr ) 

r[ dr7 
2 4  1 + hr2)* dr 

- - e-ff5 sin crc, (3.12) 

where cr = [& 1 + hr2)lt. (3.13) 

The inner axial velocity wi can be determined from (3.2) and (3.12) as 

w. = - ' (l+Gor2+- 
8& 1 + hr2)i 

(3.14) 

The boundary conditions on (3.8) on the top and bottom end plates are 

=j(l +hr2)-l on z = j A .  (3.15) 

4. The side-wall Stewartson Ef layer 
In  the present problem, both v1 and Ti are antisymmetric functions of z, and 

only an Ef Stewartson layer arises. The proper scaling for the variables in the Ef 
layer is 

u= Efii, v = G ,  w =Z, T = hp, p =  GoEfp, l - r =  E f y ,  (4.1) 

where quantities with an overbar are boundary-layer variables of order unity 
and 7 is a stretched radial co-ordinate. Note that T is scaled in a manner different 
from that in I. 

Substitution of (4.1) into (2.5)-(2.9) gives 

aulaq - a q a z  = 0, - 2ii + hT- appq  = 0, (4% (4.3) 

2u = a%/a?p, a p p z  = a 2 q a y 2 ,  -44u = a2Tpp. (4.4)-( 4.6) 

Noting (4.2), which is similar in form to the continuity equation of an incom- 
pressible fluid, we can introduce a stream function 3: 

(4-7) 
- 

= aippz, w = aqlay. 
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Eliminating ;iz from (4.4) and (4.6), and noting that all boundary-layer 
quantities must vanish as r ]  +OO, we have the thermal-wind relation 

- 
(4.8) 

(4.9) 

- v = -1T. 2 

Elimination of Ti, E ,  W and jl5 from (4.2)-(4.6) leads to a governing equation for p :  
a6F/ay6 + 4( 1 + h)  a2F/az2 = 0. 

Once r is known, we can determine V from (4.8) and 3 from 

a2T/ay2)  dz, 
- A  

( 4.1 0 a)  

where the integration constant is determined by the relation $(z = - A )  = 0. 
From (4.3), (4.5) and (4.8), we have the corresponding formula 

@/az = (1 + h)-l a4F/ay4. (4.10b) 

The boundary conditions a t  r = 1, i.e. r ]  = 0,  are 
- 
I) = = vi+v = 0, (4.11) 

a(aT'/ay) = aq/ar, (4.12) 

where a = h E 4 .  The parameter a is in practice of the order of 10. Let us consider 
it to be of order unity, however, for the sake of convenience. The boundary condi- 
tions on the side wall cannot be expressed solely in terms of boundary-layer 
variables, and are expressed as coupling conditions between the inner and the 
boundary-layer flow. The boundary conditions (4.11) are rewritten in terms of 
temperatures : 

T' = T,, a 2 T ' i a f  = a3Tia73 = 0. (4.13), (4.14) 

Thus our problemis to solve (3.8) and (4.9) simultaneously subject to (3.15) and 
(4.12)-(4.14). This strong coupling between the inner and boundary-layer flow 
via the side-wall boundary conditions is the most important point in the present 
treatment. To get a clearer understanding of the situation, let us express the 
contents of the mathematical treatment in physical terms. The function of the 
side-wall Stewartson layer is to mediate between the thermal wind in the inner 
core and the boundary condition on the side wall. Therefore the azimuthal com- 
ponent of the boundary-layer flow must be of order unity. This azimuthal 
component induces a closed circulation of order E* in the boundary layer, via the 
balance between Coriolis and viscous forces [see (4.4)]. The radial component of 
this closed circulation causes changes in the volume of fluid elements and associ- 
ated heating or cooling of these elements owing to the work done by the pressure. 
Although this heating or cooling is balanced by thermal conduction in the gas 
[see (4.6)], it  is inevitable that an excess or a lack of heat appears on account 
of this boundary-layer flow. This excess or lack cannot be compensated for by 
the thermally insulated side wall so this must be done by the inner temperature 
field. Thus the closed circulation in the boundary layer strongly affects the 
temperature field in the inner core, and vice versa. 
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5. Method of solution 

parameter and expand with respect to it: 
According to the h-expansion method proposed in I, let us take h as a small 

T =  T , + ~ T ~ +  ..., q = e,+he,+ ... . (5.1) 

In  the present work, we retain only the leading terms T, and 0,. Although h is 
assumed to be small in comparison with unity, a ( = h E 3 )  is of order unity. 

Substitution of (5.1) into (4.9) and neglect of terms of higher order with respect 
to h gives 

By a similar procedure, we get an equation for the inner temperature: 

a6T0/ar6  .t 4a2r0/a22 = 0. 

AO, = 0. 

The boundary conditions (4.12)-(4.14) and (3.15) reduce to 

on r = l  ( q = O ) ,  - A < z < A ,  1 
a(a~,/ar) = aO,/ar 

7, = e, 
a2To/a72 = a3To/aqs = o 

8 ,=+1 on z = + A ,  O < r < l .  

The temperature 7, is expanded in the cosine series 

m 

7 0  = Z f m ( 7 )  cos E(2m- l)n(z+-4)/2AI, 
m== 1 

where only odd terms are retained because of the antisymmetry of ro with respect 
to x = 0. This cosine series can be differentiated term by term with respect to x 
(Williams 1973, p. 18). The function &,/az can also be differentiated term by 
term because i3r0/az vanishes a t  z = f A [consider (4.10 b )  and the condition 
$ ( x  = f A )  = 01. Substitution of (5.8) into (5.2) subject to these conditions gives 
- 

d~fm/dyG-w; f ,  = 0, (5.9) 

where w, = [(2m- 1)77/A]*. The solution of (5.9) subject to (5.6) is 

fm('V) = B f m ( 0 )  [eXP ( - urn?') + 2 X 3-4 exp ( - f Wm 7) COB (& X 3*wm 7 - $.>I, (5.10) 

where fm(0)  is a constant to be determined later. 
The function 0, is divided according to 

8, = x/A + Qo(r, z), (5.11) 

where AQ, = 0,  

@ , = O  a t  z = + A .  

Let us expand @, in a sine series: 

co 

@,, = S g,(r) sin [nn(z  + A  ) / A ] ,  
n=l 

(5.12) 

(5.13) 
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where the antisymmetric nature of Qo has been used. Because Qo is zero a t  
z = f A ,  this series can be differentiated term by term. As the value of a@,/az a t  
z = A is the same as that at z = - A  by the antisymmetry of Q,, the Fourier 
series for aQo/ax can also be differentiated term by term. Thus we obtain 

d2g, + - - - p g  ldgn = 0, 
dr2 r dr 

(5.14) 

where P, = nn-/A. The solution of (5 .14)  which is regular at  the axis is 

gn = a , W n T ) ,  (5.15) 

where I,  is a modified Bessel function of order zero and a, is a constant to be 
determined later. 

By substitution of the above formulae, the boundary conditions (5 .4 )  and 
(5 .5 )  reduce to 

, ( 5 . 1 6 )  W (2m- i ) n ( ~ + A )  nn(z + A )  
A = C a,PmIl (Pn)  sin 

2A n = l  
-4a fm(O)WmCOS 

m=l 

. (5.17) ( ~ ~ - I ) T ( z + A )  x nn(z + A )  
A = -+ E a,Io(Pm)sin 

2A A n = l  
5 fm(O)COS 

m= 1 

Thus the problem is to solve (6.16) and (5 .17)  for the f,(O) and a,. There are two 
methods of solution. First, the left-hand side may be rearranged as the series 
expansion of sin [nn(z + A ) / A ] ,  and we get 

f m ( 0 )  = T I  ( E) a,, (5.18) 
-- 4Aa 5 [ (ami l ) n ] ,  

T m=l  4n2-(2m-1)2 A 

8n 5 f m ( 0 )  
,=14n2-(2m-1)2 

(5 .19)  

From these two equations, we get an infinite set of linear algebraic equations for 
the f , ( O ) ,  which can be solved by a truncation procedure. The constants a, may 
easily be obtained once the f,,(O) have been found. Second, the right-hand side 
may be rearranged as the series expansion of cos [(Zm- I ) ~ T ( x + A ) / Z A ] .  In  this 
case, we get an infinite set of linear algebraic equations for the a,. The procedure 
is similar to that for the first case, and we do not give the explicit formulae. 

These two methods were tried and compared. The number of terms to be 
retained is determined by the criterion that the relative difference between the 
results of the two methods be sufficiently small in comparison with unity. Thus 
we found that 60-80 terms are sufficient. We give the inner temperature fields 
and the streamlines in the Stewartson E* layer for the cases a = 0, 1, 10 and co 
for A = I and 5 in figures 1-4. The case a = 0 corresponds to that of an incompres- 
sible fluid. As the temperature perturbation Q, is identically zero in this case, it  
is not shown in the figures. In  the opposite limit a = 00, there is no closed circula- 
tion in the Stewartson layer, so this is not shown either. 
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6. Discussion 
From the above results we can conclude that (a) the flow fields and inner 

temperature fields in the cases of a conducting and an insulated side wall are the 
same (to zeroth order in h) if the condition h < E* holds and we disregard non- 
linear convective heat transport, and ( b )  the closed circulation in the E* layer is 
strongly suppressed and the inner temperature field deviates from the linear 
profile if h 3 E* and the side wall is thermally insulated. 

In  a practical gas centrifuge, his about 0-3 and E$ - 10-2, so h 9 EB does hold. 
Therefore the thermal condition on the side wall is important in the determination 
of all physical variables except the axial velocity profile in the inner core. 

The authors wish to  express their thanks to Professor Takeo Sakurai for his 
critical discussion and careful reading of the manuscript. The computations were 
made by FACOM 230-75 a t  the data processing centre of Kyoto University. 
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